NEPRT-86-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (First Semester) EXAMINATION APRIL/MAY, 2024

PHYSICS

(SPHYE-401)

(Electronic Devices)

(Tue	sday, 3	30-04-2024) Time: 10.00 a.m. to 12.30 p.1	n.
Time-	$-2\frac{1}{2}$ H	Hours Maximum Marks—	60
N.B.	: (<i>i</i>)	All questions carry equal marks.	
	(ii)	Question No. 1 is compulsory.	
	(iii)	Solve any three of the remaining five questions (Q. Nos. 2 to 6).	
	(iv)	Figures to the right indicate full marks.	
1.	Solve	the following questions (each question 5 marks):	15
	(a)	Explain <i>p</i> and <i>n</i> -type semiconductor.	
	(<i>b</i>)	Explain working of LED.	
	(c)	State characteristics of ideal Op-Amp.	
2.	(a)	Explain input and output characteristics of NPN transistor.	8
	(<i>b</i>)	Explain principle and working of JFET.	7
3.	(a)	Explain working and applications of photodiodes.	8
	(<i>b</i>)	What are direct and indirect band gap semiconductor? Explain	in
		brief.	7
		P.T.	Э.

WT		(2) NEPRT—86—202	:4
4.	(a)	Explain, how Op-amp can be used as non-inverting amplifier and give	тe
		the equation of voltage gain.	8
	(<i>b</i>)	Draw the circuit diagram for Op-amp used as adder. Explain its working	າຣ
		and derive equation for output voltage.	7
5.	(a)	Explain binary addition and substraction with suitable example.	8
	(<i>b</i>)	Draw the symbols and truth tables for AND, OR and NO	Т
		gates.	7
6.	Write	short notes on (each question 5 marks):	15
	(a)	UJT (Uni-junction transistors)	
	(<i>b</i>)	Differential amplifier.	
	(a)	Evelusiva OR gata (Ev-OR)	

NEPRT—16—2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (First Semester) EXAMINATION APRIL/MAY, 2024

PHYSICS

SPHYC-401

(Mathematical Methods in Physics)

(Friday, 19-4-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Question No. 1 is compulsory.
 - (iii) Solve any three of the remaining five questions (Q. Nos. 2 to 6).
 - (iv) Figures to the right indicate full marks.
- 1. Solve the following questions

20

- (a) Inverse of a matrix
- (b) Recurrence relations of Legendre's polynomial
- (c) First and second shifting properties of Laplace's transform
- (d) Limit and continuity of a complex function.

2. (a) Solve the following system of linear non-homogeneous equations: 20

$$x + y + z = 6$$

$$x - y + z = 2$$

$$2x + y - z = 1$$

- (b) Let \mathbf{R}^{3-} be the Euclidean inner product use the Gram-Schmidt's orthogonalization process to transform the vectors $u_1=(1,\ 2,\ 1),$ $u_2=(2,\ 1,\ 4)$ and $u_3=(4,\ 5,\ 6)$ into orthogonal basis $(v_1,\ v_2,\ v_3).$
- 3. (a) Find the solution of differential equation of Legendre's polynomial : 20

$$(1 - x^2)y'' - 2xy' + n(n + 1)y = 0.$$

- (b) Discuss the orthogonality condition of Bessel polynomial.
- 4. (a) Find the Fourier series of the given function: 20

$$f(x) = \pi - x, \quad 0 < x < \pi$$

- (b) Explain the first and second shifting properties of inverse Laplace transform and find the inverse Laplace of the following:
 - $(i) \qquad \frac{1}{(S+2)^5}$
 - (ii) $\frac{1}{9S^2 + 6S + 1}$.

$\mathrm{W}\Gamma$	(3)	NEPRT—16—2024

5. (a) If f(z) is analytic in a closed curve 'c' except at a finite no. of poles within 'c', then show that :

 $\int_c f(z)dz = 2\pi i$ [sum of residues at the poles in 'c']

- (b) (i) Check whether the given function is analytic or not $f(z) = z^2$
 - (ii) Solve $\int_{C} \frac{z^2 + 1}{z^2(z 2)} dz$, where c : |z| = 1.
- 6. Write short notes on the following:
 - (a) Types of matrices
 - (b) Recurrence relation of Hermite polynomial
 - (c) Fourier complex integral
 - (d) Harmonic function.

NEPRT-52-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Semester) EXAMINATION

APRIL/MAY, 2024

PHYSICS

(Numerical Techniques and C-Programming)

(Wednesday, 24-04-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Question No. 1 is compulsory.
 - (iii) Solve any three of the remaining five questions (Q. Nos. 2 to 6).
 - (iv) Figures to the right indicate full marks.
 - (v) Use of scientific calculator is allowed.
- 1. Solve the following questions (each question carries 5 marks): 20
 - (a) Explain the principle of least squares.
 - (b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Simpson's $\frac{1}{3}$ rd rule.
 - (c) Discuss Gauss-Jordan matrix inversion method.
 - (d) Executable and non-executable statements in C-programming.
- 2. (a) Explain the Bisection method to obtain roots of a polynomial equation and find a real root of the equation $f(x) = x^3 x 1 = 0$. 10

- (b) Find the approximate value of $I = \int_0^1 \frac{dx}{1+x}$, using the Trapezium rule with 2, 4 and 8 equal subintervals using the exact solution. Find the absolute error.
- 3. (a) Solve the system of equations:

$$x_1 + 10x_2 - x_3 = 3$$

$$2x_1 + 3x_2 + 20x_3 = 7$$

 $10x_1 - x_2 + 2x_3 = 4$ using the Gauss-Elimination method.

- (b) Write a C-programme for the addition of two 3×3 matrix. 10
- 4. (a) Derive Newton's Backward difference interpolation formula and for the given data, find f(22):

x	f(x)
20	354
25	332
30	291
35	260
40	231
45	204

(b) Find inverse of the matrix using Gauss-Jordan method: 10

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}.$$

WT		(3) NEPRT—52—20)24
5.	(a)	Derive Newton-Cotes formula for the numerical integration.	10
	(<i>b</i>)	What are random number? How are random numbers generated	in
		C-programming ?	10
6.	Solve	the following questions (each question 5 marks):	20
	(a)	Discuss Built-in and user defined functions.	
	(<i>b</i>)	Euler's method.	
	(c)	Solution of elliptical equation using finite difference method.	
	(d)	Fitting curve of the form $y = ax^b$.	

NEPRT-193-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (Second Semester) EXAMINATION

APRIL/MAY, 2024

PHYSICS

(Atomic and Molecular Physics)

Time	e—2½ F.	9-04-2024) Time: 10.00 a.m. to 12.30 Maximum Marks	7
N.B.	:=(i)	All questions carry equal marks.	
	(ii)	Question No. 1 is compulsory.	
	(iii)	Solve any three of the remaining five questions	from
		Q. Nos. 2 to 6.	
	(iv)	Figures to the right indicate full marks.	
1.	Solve	the following questions (each question carries 5 marks):	15
	(a)	Explain L-S and J-J coupling	
	(<i>b</i>)	Types of molecules	
	(c)	IR spectrometer.	
2.	(a)	Explain normal Zeeman effect in detail.	8
	(<i>b</i>)	What are the quantum numbers? Explain its significance.	7
3.	(a)	Explain the rotational spectra of rigid diatomic molecule.	8
	(<i>b</i>)	Explain the pure rotational spectra of symmetric top molecule.	7
4.	(a)	Discuss vibrational spectra of diatomic molecule.	8
	(<i>b</i>)	Explain Franck-Condon principle.	7

WT		(2) NEPRT—193—2	2024
5.	(a)	Explain classical theory of Raman effect.	8
	(<i>b</i>)	Describe Raman activity of vibration of H ₂ O molecule.	10 h
6.	Write	short notes on (each question carries 5 marks):	15
	(a)	Explain Pauli's exclusion principle.	
	(<i>b</i>)	Explain P, Q and R branches.	
	(c)	Molecular polarizability.	

NEPRT-153-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (Second Semester) EXAMINATION APRIL/MAY, 2024

PHYSICS

(Condensed Matter Physics)

(Tuesday, 23-04-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Question No. 1 is compulsory.
 - (iii) Solve any three from the remaining five questions.
- 1. Solve the following questions:

20

- (a) Define the following terms:
 - (i) Unit cell
 - (ii) Symmetry operation
 - (iii) Coordination number
 - (iv) Primitive cell
 - (v) Packing factor.
- (b) Derive an expression for Bragg's law in two-dimension.
- (c) Derive an expression for effective mass of electron. Discuss the concept of positive, negative and infinite mass.
- (d) Describe characteristics of Fermi surface.

WT.		(2) NEPRT—153—2	024
2.	(a)	Show that packing fraction of BCC and FCC lattices are 0.68 and 0	0.74
		respectively.	10
	<i>(b)</i>	What are Miller indices? How are they determined? Derive equa-	tion
		for the separation between the lattice plane of cubic crystal.	10
3.	(a)	Why are X-rays used for determination of crystal structure? Disc	cuss
		interaction of X-rays with matter.	10
	(<i>b</i>)	What do you mean by defects in crystal? Explain in brief pe	oint
		defects.	10
4.	(a)	Discuss Kronig-Penny model for the motion of electrons in a period	odic
		potential.	10
	(<i>b</i>)	Describe nearly free electron model for determining the electron ene	ergy
		bands and show that the model leads to finite discontinuities in	the
		energy at zone boundaries.	10
5.	(a)	Describe Brillouin zones of a square lattice in two dimensions.	10
	(<i>b</i>)	Discuss de Hass-Van Alphen effect.	10
6.	Write	short notes on:	20
	(a)	Fermi surface and its importance	
	(<i>b</i>)	Electron motion in one-dimensional crystal	
	(c)	Laue's method	
	(d)	Rotation symmetry.	

NEPRT-111-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (Second Semester) EXAMINATION

NOVEMBER/DECEMBER, 2024

PHYSICS

Paper-SPHYC-451

(Quantum Mechanics)

(Thursday, 18-04-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Q. No. 1 is compulsory.
 - (iii) Solve any three of the remaining five questions (Q. No. 2 to Q. No. 6)
 - (iv) Figures to the right indicate full marks.
- 1. Solve the following questions (each question carries 5 marks): 20
 - (a) Explain the physical significance of wave function.
 - (b) Show that:
 - (i) $\sigma_x \sigma_y = l \sigma_z$
 - $(ii) \qquad [L^2, L_x) = 0.$

WT	(2)	NEPRT—111—202

- (c) Explain sudden approximation with reference to time dependent perturbation theory.
- (d) Define differential and total scattering cross-section.
- 2. Solve the following questions (Each question carries 10 marks)
 - (a) State the fundamental postulates of quantum mechanics and explain in detail.
 - (b) Derive an expression for the time independent Schrodinger's wave equation.
- 3. Solve the following questions (Each question carries 10 marks) :
 - (a) What are Ladder operators? Deduce the matrix elements of these ladder operators.
 - (b) Explain the concept of eigen values and find out the eigen values of J^2 and J_z operators.
- 4. Solve the following questions (Each question carries 10 marks):
 - (a) Describe the stationary perturbation theory for solving Schrodinger equation of a non-degenerate system and obtain the expression for first order correction to energy.
 - (b) Outline WKB method for a one-dimensional case and derive the connection formulae.

WT		(3) NEPRT—111—	202
5.	Solve	the following question (Each question carries 10 marks) :	
	(a)	Describe the laboratory and centre of mass reference frames.	10
	(<i>b</i>)	Explain in detail the Born approximation.	10
6.	Write	short notes on (5 marks each):	20
	(a)	Unitary transformation	
	(<i>b</i>)	Spin angular momentum	
	(c)	Fermi Golden Rule	
	(d)	Symmetric and asymmetric wave functions.	

NEPRT-86-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (First Semester) EXAMINATION APRIL/MAY, 2024

PHYSICS

(SPHYE-401)

(Electronic Devices)

(Tue	sday, 3	30-04-2024) Time: 10.00 a.m. to 12.30 p.1	n.
Time-	$-2\frac{1}{2}$ H	Hours Maximum Marks—	60
N.B.	: (<i>i</i>)	All questions carry equal marks.	
	(ii)	Question No. 1 is compulsory.	
	(iii)	Solve any three of the remaining five questions (Q. Nos. 2 to 6).	
	(iv)	Figures to the right indicate full marks.	
1.	Solve	the following questions (each question 5 marks):	15
	(a)	Explain <i>p</i> and <i>n</i> -type semiconductor.	
	(<i>b</i>)	Explain working of LED.	
	(c)	State characteristics of ideal Op-Amp.	
2.	(a)	Explain input and output characteristics of NPN transistor.	8
	(<i>b</i>)	Explain principle and working of JFET.	7
3.	(a)	Explain working and applications of photodiodes.	8
	(<i>b</i>)	What are direct and indirect band gap semiconductor? Explain	in
		brief.	7
		P.T.	Э.

WT		(2) NEPRT—86—202	4
4.	(a)	Explain, how Op-amp can be used as non-inverting amplifier and giv	е
		the equation of voltage gain.	8
	(<i>b</i>)	Draw the circuit diagram for Op-amp used as adder. Explain its workin	g
		and derive equation for output voltage.	7
5.	(a)	Explain binary addition and substraction with suitable example.	8
	(<i>b</i>)	Draw the symbols and truth tables for AND, OR and NO	Т
		gates.	7
6.	Write	short notes on (each question 5 marks):	5
	(a)	UJT (Uni-junction transistors)	
	(<i>b</i>)	Differential amplifier.	
	(a)	Evelusive OR gate (Ev-OR)	

NEPRT—16—2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (First Semester) EXAMINATION APRIL/MAY, 2024

PHYSICS

SPHYC-401

(Mathematical Methods in Physics)

(Friday, 19-4-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Question No. 1 is compulsory.
 - (iii) Solve any three of the remaining five questions (Q. Nos. 2 to 6).
 - (iv) Figures to the right indicate full marks.
- 1. Solve the following questions

20

- (a) Inverse of a matrix
- (b) Recurrence relations of Legendre's polynomial
- (c) First and second shifting properties of Laplace's transform
- (d) Limit and continuity of a complex function.

2. (a) Solve the following system of linear non-homogeneous equations: 20

$$x + y + z = 6$$

$$x - y + z = 2$$

$$2x + y - z = 1$$

- (b) Let \mathbf{R}^{3-} be the Euclidean inner product use the Gram-Schmidt's orthogonalization process to transform the vectors $u_1=(1,\ 2,\ 1),$ $u_2=(2,\ 1,\ 4)$ and $u_3=(4,\ 5,\ 6)$ into orthogonal basis $(v_1,\ v_2,\ v_3).$
- 3. (a) Find the solution of differential equation of Legendre's polynomial : 20

$$(1 - x^2)y'' - 2xy' + n(n + 1)y = 0.$$

- (b) Discuss the orthogonality condition of Bessel polynomial.
- 4. (a) Find the Fourier series of the given function: 20

$$f(x) = \pi - x, \quad 0 < x < \pi$$

- (b) Explain the first and second shifting properties of inverse Laplace transform and find the inverse Laplace of the following:
 - $(i) \qquad \frac{1}{(S+2)^5}$
 - (ii) $\frac{1}{9S^2 + 6S + 1}$.

WT	(3)	NEPRT—16—2024

5. (a) If f(z) is analytic in a closed curve 'c' except at a finite no. of poles within 'c', then show that :

 $\int_c f(z)dz = 2\pi i$ [sum of residues at the poles in 'c']

- (b) (i) Check whether the given function is analytic or not $f(z) = z^2$
 - (ii) Solve $\int_{C} \frac{z^2 + 1}{z^2(z 2)} dz$, where c : |z| = 1.
- 6. Write short notes on the following:
 - (a) Types of matrices
 - (b) Recurrence relation of Hermite polynomial
 - (c) Fourier complex integral
 - (d) Harmonic function.

NEPRT-52-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Semester) EXAMINATION

APRIL/MAY, 2024

PHYSICS

(Numerical Techniques and C-Programming)

(Wednesday, 24-04-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Question No. 1 is compulsory.
 - (iii) Solve any three of the remaining five questions (Q. Nos. 2 to 6).
 - (iv) Figures to the right indicate full marks.
 - (v) Use of scientific calculator is allowed.
- 1. Solve the following questions (each question carries 5 marks): 20
 - (a) Explain the principle of least squares.
 - (b) Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using Simpson's $\frac{1}{3}$ rd rule.
 - (c) Discuss Gauss-Jordan matrix inversion method.
 - (d) Executable and non-executable statements in C-programming.
- 2. (a) Explain the Bisection method to obtain roots of a polynomial equation and find a real root of the equation $f(x) = x^3 x 1 = 0$. 10

- (b) Find the approximate value of $I = \int_0^1 \frac{dx}{1+x}$, using the Trapezium rule with 2, 4 and 8 equal subintervals using the exact solution. Find the absolute error.
- 3. (a) Solve the system of equations:

$$x_1 + 10x_2 - x_3 = 3$$

$$2x_1 + 3x_2 + 20x_3 = 7$$

 $10x_1 - x_2 + 2x_3 = 4$ using the Gauss-Elimination method.

- (b) Write a C-programme for the addition of two 3×3 matrix. 10
- 4. (a) Derive Newton's Backward difference interpolation formula and for the given data, find f(22):

x	f(x)
20	354
25	332
30	291
35	260
40	231
45	204

(b) Find inverse of the matrix using Gauss-Jordan method: 10

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}.$$

WT		(3) NEPRT—52—20)24
5.	(a)	Derive Newton-Cotes formula for the numerical integration.	10
	(<i>b</i>)	What are random number? How are random numbers generated	in
		C-programming ?	10
6.	Solve	the following questions (each question 5 marks):	20
	(a)	Discuss Built-in and user defined functions.	
	(<i>b</i>)	Euler's method.	
	(c)	Solution of elliptical equation using finite difference method.	
	(d)	Fitting curve of the form $y = ax^b$.	

NEPRT-193-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (Second Semester) EXAMINATION

APRIL/MAY, 2024

PHYSICS

(Atomic and Molecular Physics)

(Mo	nday, 2	9-04-2024) Time: 10.00 a.m. to 12.30	p.m.
Tim	e—2½ F	Iours Maximum Mark	s—60
N.B	:=(i)	All questions carry equal marks.	
	(ii)	Question No. 1 is compulsory.	
	(iii)	Solve any three of the remaining five questions	from
		Q. Nos. 2 to 6.	
	(iv)	Figures to the right indicate full marks.	
1.	Solve	the following questions (each question carries 5 marks):	15
	(a)	Explain L-S and J-J coupling	
	(<i>b</i>)	Types of molecules	
	(c)	IR spectrometer.	
2.	(a)	Explain normal Zeeman effect in detail.	8
	(<i>b</i>)	What are the quantum numbers? Explain its significance.	7
3.	(a)	Explain the rotational spectra of rigid diatomic molecule.	8
	(<i>b</i>)	Explain the pure rotational spectra of symmetric top molecule.	. 7
4.	(a)	Discuss vibrational spectra of diatomic molecule.	8
	<i>(b)</i>	Explain Franck-Condon principle.	7

WT		(2) NEPRT—193—2	2024
5.	(a)	Explain classical theory of Raman effect.	8
	(<i>b</i>)	Describe Raman activity of vibration of H ₂ O molecule.	10 h
6.	Write	short notes on (each question carries 5 marks):	15
	(a)	Explain Pauli's exclusion principle.	
	(<i>b</i>)	Explain P, Q and R branches.	
	(c)	Molecular polarizability.	

NEPRT-153-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (Second Semester) EXAMINATION APRIL/MAY, 2024

PHYSICS

(Condensed Matter Physics)

(Tuesday, 23-04-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Question No. 1 is compulsory.
 - (iii) Solve any three from the remaining five questions.
- 1. Solve the following questions:

20

- (a) Define the following terms:
 - (i) Unit cell
 - (ii) Symmetry operation
 - (iii) Coordination number
 - (iv) Primitive cell
 - (v) Packing factor.
- (b) Derive an expression for Bragg's law in two-dimension.
- (c) Derive an expression for effective mass of electron. Discuss the concept of positive, negative and infinite mass.
- (d) Describe characteristics of Fermi surface.

WT.		(2) NEPRT—153—2	024
2.	(a)	Show that packing fraction of BCC and FCC lattices are 0.68 and 0	0.74
		respectively.	10
	<i>(b)</i>	What are Miller indices? How are they determined? Derive equa	tion
		for the separation between the lattice plane of cubic crystal.	10
3.	(a)	Why are X-rays used for determination of crystal structure? Disc	cuss
		interaction of X-rays with matter.	10
	(<i>b</i>)	What do you mean by defects in crystal? Explain in brief p	oint
		defects.	10
4.	(a)	Discuss Kronig-Penny model for the motion of electrons in a peri-	odic
		potential.	10
	(<i>b</i>)	Describe nearly free electron model for determining the electron ene	ergy
		bands and show that the model leads to finite discontinuities in	the
		energy at zone boundaries.	10
5.	(a)	Describe Brillouin zones of a square lattice in two dimensions.	10
	(<i>b</i>)	Discuss de Hass-Van Alphen effect.	10
6.	Write	short notes on:	20
	(a)	Fermi surface and its importance	
	(<i>b</i>)	Electron motion in one-dimensional crystal	
	(c)	Laue's method	
	(d)	Rotation symmetry.	

NEPRT-111-2024

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (Second Semester) EXAMINATION

NOVEMBER/DECEMBER, 2024

PHYSICS

Paper-SPHYC-451

(Quantum Mechanics)

(Thursday, 18-04-2024)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Q. No. 1 is compulsory.
 - (iii) Solve any three of the remaining five questions (Q. No. 2 to Q. No. 6)
 - (iv) Figures to the right indicate full marks.
- 1. Solve the following questions (each question carries 5 marks): 20
 - (a) Explain the physical significance of wave function.
 - (b) Show that:
 - (i) $\sigma_x \sigma_y = l \sigma_z$
 - $(ii) \qquad [L^2, L_x) = 0.$

WT	(2)	NEPRT—111—202

- (c) Explain sudden approximation with reference to time dependent perturbation theory.
- (d) Define differential and total scattering cross-section.
- 2. Solve the following questions (Each question carries 10 marks)
 - (a) State the fundamental postulates of quantum mechanics and explain in detail.
 - (b) Derive an expression for the time independent Schrodinger's wave equation.
- 3. Solve the following questions (Each question carries 10 marks) :
 - (a) What are Ladder operators? Deduce the matrix elements of these ladder operators.
 - (b) Explain the concept of eigen values and find out the eigen values of J^2 and J_z operators.
- 4. Solve the following questions (Each question carries 10 marks):
 - (a) Describe the stationary perturbation theory for solving Schrodinger equation of a non-degenerate system and obtain the expression for first order correction to energy.
 - (b) Outline WKB method for a one-dimensional case and derive the connection formulae.

WT		(3) NEPRT—111—	202
5.	Solve	the following question (Each question carries 10 marks) :	
	(a)	Describe the laboratory and centre of mass reference frames.	10
	(<i>b</i>)	Explain in detail the Born approximation.	10
6.	Write	short notes on (5 marks each):	20
	(a)	Unitary transformation	
	(<i>b</i>)	Spin angular momentum	
	(c)	Fermi Golden Rule	
	(d)	Symmetric and asymmetric wave functions.	