This question paper contains 3 printed pages]

NEPNY-16-2023

FACULTY OF SCIENCE

M.Sc. (NEP) (First Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

PHYSICS

Paper SPHYC-401

(Mathematical Methods in Physics)

(Wednesday, 20-12-2023)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Question No. 1 is compulsory.
 - (iii) Solve any three of the remaining five questions (Q. No. 2 to Q. No. 6).
 - (iv) Figures to the right indicate full marks.
- 1. Solve the following questions:

20

- (a) Rotation of a matrix
- (b) Generating function of Bessel polynomial
- (c) Fourier sine and cosine transform
- (d) Cauchy residue theorem.

P.T.O.

2. (a) Find the eigen values, eigen vectors and diagonal matrix of the following:

 $\mathbf{A} = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$

- (b) Discuss Gram-schmidt's orthogonalization process in detail.
- 3. (a) Obtain the Rodrigue's formula of Legendre polynomial and find the values of :

$$P_0(x), P_1(x), P_2(x) \text{ and } P_3(x)$$

(b) Find the solution of Hermite polynomial i.e.

$$y'' - 2xy' + 2ny = 0.$$

- 4. (a) Define what is the Laplace transform and find the Laplace transform of.
 - $(i) \quad f(t) = 1$
 - (ii) $f(t) = \sin at$
 - (iii) $f(t) = \cos at$
 - (iv) $f(t) = \sin hat$
 - (v) $f(t) = \cos hat$
 - (b) Explain the first and second shifting properties of Laplace transform and find the solution of differential equation using Laplace transform:

$$y"+25y=10\cos 5t,$$

where

$$y(0) = 2$$
, $y'(0) = 0$.

5. (a) Define analytic function and show that if f(z) is analytic in and on the closed curve 'c' and if 'a' is any point on 'c', then :

$$f(a) = \frac{1}{2\pi i} \int_{c} \frac{f(z)}{z - a} dz.$$

- (b) Evaluate $\int_{c}^{\infty} (x+y)dx + x^{2}ydy$:
 - (i) Along $y = x^2$ having (0,0) and (3,9) as end points
 - (ii) Along y = 3x between (0,0) and (3,9).

20

- 6. Write short notes on the following:
 - (a) Linear dependence and independence of vectors
 - (b) Rodrigue's formula of Laguerre's polynomial
 - (c) Properties and applications of Fourier series
 - (d) Singularities of an analytic function.