This question paper contains 4 printed pages]

NY-227-2023

FACULTY OF SCIENCE AND TECHNOLOGY

M.Sc. (Second Year) (Fourth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(New/CBCS Pattern)

MATHEMATICS

Paper-XXI-C

(Fuzzy Sets and Their Applications-II)

(Monday, 11-12-2023)

Time: 2.00 p.m. to 5.00 p.m.

Time—Three Hours

Maximum Marks—75

- N.B. : (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- Define a fuzzy measure function in detail and explain axioms boundary conditions, monotonicity, continuity with statement.

Or

Given a consonant body of evidence (\mathbf{H}, m) , then prove that the associated consonant belief and plausibility measures possess the following property:

- (i) Bel $(A \cap B) = \min [Bel (A), Bel (B)]$ for all $A, B \in \mathbf{P}(X)$
- (ii) Pl $(A \cup B) = \max [Pl (A), Pl (B)]$ for all $A, B \in \mathbf{P}(X)$.

P.T.O.

WT (2) NY—227—2023

2. Define measure of fuzziness, degree of fuzziness and the term maximally fuzzy in f(A) assumes the maximum value if and only if A is maximally fuzzy, by the membership grade $\frac{1}{2}$ for all $x \in X$.

Or

Prove that function $I(N) = log_2N$ is the only function that satisfies

Axiom I1 : I(N.M) = I(N) + I(M) for all $N, M \in \mathbb{N}$

Axiom I2 : $I(N) \le I(N + 1)$ for all $N \in \mathbb{N}$

Axiom I3 : I(2) = 1

3. Define the write the formulae for dissonance in evidence, confusion in evidence, non-specificity in evidence, measure of fuzziness with its formula.

Or

Consider a universal set X, three non-empty subsets of which are of our interest: A, B and A \cap B. Assume that the only evidence is expressed in terms of the total belief focusing on A and the total belief focusing on B. The aim is to estimate the basic assignment values for X, A, B and A \cap B. The use of the principle of maximum non-specificity leads in this case to the following optimization problem.

Determine values m(X), m(A), m(B) and $m(A \cap B)$ for which the function $m(X)\log_2|X|+m(A)\log_2|A|+m(B)\log_2|B|+m(A\cap B)\log_2|A\cap B|$ reaches its maximum subject to the constraints.

WT (3) NY—227—2023

$$m(A) + m(A \cap B) = a$$

$$m(B) + m(A \cap B) = b$$

$$m(X) + m(A) + m(B) + m(A \cap B) = 1$$

$$m(X), m(A), m(B), m(A \cap B) \ge 0$$

where $a, b \in [0, 1]$ are given numbers.

 O_{1}

Give the difference between crisp and fuzzy data for two variables each with three states (values, labels) 0, 1, 2. Define pseudo-frequencies and derive expression for pseudo-frequencies.

P.T.O.

WT (4) NY—227—2023

5. Attempt any three out of four:

15

- (a) Write a short note on fuzzy database model and its associated fuzzy relational algebra with suitable example.
- (b) Write a short note on 'Hartley information'.
- (c) Prove that H(X|Y) = H(X, Y) H(Y)
- (d) Derive the formula for two-conditional probability distributions $P_{X|Y}$ and $P_{Y|X}$ and prove that the sets X and Y are independent of each other if and only if they are non-interactive.