This question paper contains 3 printed pages]

NY-136-2023

FACULTY OF ARTS AND SCIENCE

M.A./M.Sc. (Second Year) (Fourth Semester)

(NewCBCS Pattern)

MATHEMATICS

(Paper-XX)

(Abstract Algebra-II) (Field Theory)

(Friday, 08-12-2023)

Time: 2.00 p.m. to 5.00 p.m.

Time—3 Hours

Maximum Marks—75

N.B. := (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- 1. Attempt the following:

15

- (a) If $F \subseteq E \subseteq K$ be field such that $[K : E] <_{\infty}$ and $[E : F] <_{\infty}$, then prove the following :
 - (i) $[K : F] < \infty$
 - (ii) [K : F] = [K : F] [E : F].
- (b) Show that, the polynomial $f(x) = x^4 2$ is irreducible over Q.

Or

- (a) State and prove Gauss lemma.
- (b) Check the following polynomial are irreducible over Q or not:

$$(i) \ f(x) = x^3 - 5x + 10$$

$$(ii) g(x) = x^2 + x + 1.$$

P.T.O.

2. Attempt the following:

15

(a) Prove that, any finite field F with P^n elements is the splitting field of $x^{p^n} - x \in F_p(x)$,

consequently any two finite field with \mathbf{P}_n elements are isomorphic.

(b) Prove that $Q(\sqrt{2}, \sqrt{3}) = Q(\sqrt{2} + \sqrt{3})$.

Or

- (a) Let $f(x) \in F[x]$ be any polynomial of degree $n \ge 1$ with α is root, then prove that α is multiple root of f(x) if and only if f'(d) = 0.
- (b) Find the splitting field of polynomial $f(x) = x^2 2$ over Q.
- 3. Attempt the following

15

- (a) If E is finite extension of a field F, then prove that : $|G(E/F)| \le |E:F|.$
- (b) Let F be a field of characteristic $\neq 2$. Let $x^2 a \in F[x]$ be an irreducible polynomial over F, then show that its Galois group is of order 2.

Or

- (a) Let E be the Galois extension of F. Let K be any subfield of E containing F. Then the mapping $K \to G$ (E/K) setup a one-one corresponding from set of subfield of E containing F to the subgroup of G (E/F). Then prove that :
 - (i) K = $E_{G(E/K)}$
 - (ii) For any subgroup H of G(E/F), then H = $G(E/E_H)$.
- (b) Prove that, the group G (Q(α)/Q), where $x^5 = 1$ and $\alpha \neq 1$ is isomorphic to cyclic group of order 4.

m WT	(3)	

15

15

NY—136—2023

- 4. Attempt the following:
 - (a) Let F be a field and n be a positive integer, then prove that primitive nth root of unity is some extension E of F if and only either char
 - (b) If a and b are constructible number, then prove that
 - (i) a. b is constructible

F = 0 or char $F \nmid n$.

(ii) a/b is constructible if $a/b \neq 0$.

Or

- (a) If a > 0 is constructible, then prove that \sqrt{a} is constructible.
- (b) Express the following symmetric polynomial has a rational function of elementary symmetric function:

$$x_1^2 + x_2^2 + x_3^2$$
.

- 5. Attempt any three of the following:
 - (a) Determine the minimal polynomial over Q of the element $\sqrt{2}$ + 5.
 - (b) Show that, R is not normal extension of Q.
 - (c) Let E_H be a subfield of F and if E is an extension of a field F and $H \leq G$, then show that $F \subseteq E_H \subseteq H$.
 - (d) Prove that, the Galois group of $x^4 + x^2 + 1$ is the same as that of $x^6 1$ and is of order 2.

NY-17-2023