This question paper contains 4 printed pages]

NEPNY-32-2023

FACULTY OF SCIENCE AND TECHNOLOGY

M.A./M.Sc. (NEP) (First Year) (First Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

MATHEMATICS

Paper-SMATC-402

(Real Analysis)

(Friday, 22-12-2023)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

N.B. := (i) All questions carry equal marks.

- (ii) Q. No. 1 is compulsory.
- (iii) Answer any three from Q. No. 2 to Q. Nos. 6.
- (iv) Figures to the right indicate full marks.
- 1. Answer the following:

20

If $f \in R(\alpha)$ on [a, b], then prove that $|f| \in R(\alpha)$ in [a, b] and $\left| \int_a^b f d\alpha \right| \le \int_a^b |f| \, d\alpha$.

P.T.O.

- (b) Let $f_n(x) = \frac{\sin x}{\sqrt{n}}$, $(x \in \mathbb{R}, n = 1, 2,)$, then prove that $\lim_{n\to\infty} f_n'(0) \neq f'(0)$.
- (c) Every convergent sequence contains a uniformly convergent subsequence. Justify your answers.
- (d) Let $f: \mathbb{R} \to \mathbb{R}$ with $f(0) = \text{and } f(t) = t^2 \sin\left(\frac{1}{t}\right)$ if $t \neq 0$, then prove that f is differentiable on \mathbb{R} but not of class c^1 on \mathbb{R} .
- 2. Answer the following:
 - (a) Prove that, $f \in R(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$ there exists a partition p on [a, b] such that $U(P, f, \alpha) L(P, f, \alpha) < \varepsilon$.

20

- (b) (i) Suppose α increases on [a, b], $a \le x_0 \le b$, α continuous at x_0 , $f(x_0) = 1 \text{ and } f(x) = 0, \text{ if } x \ne x_0. \text{ Show that } f \in \mathbf{R}(\alpha) \text{ and that } \int f \ d\alpha = 0.$
 - (ii) Does the integrability of |f| implies that of f? Justify your answer.
- 3. Answer the following:
 - (a) State and prove the Weierstrass M-test for uniform convergence for series of function.
 - (b) (i) Let $f_n(x) = \frac{x^2}{(1+x^2)^n}$, $(x \in \mathbb{R}, n = 0, 1, 2,)$. Then prove that the series $\sum_{n=0}^{\infty} f_n(x)$ of continuous functions converges to a discontinuous sum.
 - (ii) Does every point convergence of sequence of functions is uniform convergent? Justify your answer.

4. Answer the following:

20

(a) Given a double sequence $\{a_{ij}\}$. $i=1,\,2,\,3,\ldots,j=1,\,2,\,3,\ldots$, suppose that :

$$\sum_{j=1}^{\infty} |a_{ij}| = b_i \quad (i = 1, 2, 3 \dots)$$

and Σ b_i converges. Then prove that :

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}.$$

- (b) (i) Does the every member of an equicontinuous family is uniformly continuous? Justify your answer.
 - Suppose f is a real continuous function on \mathbb{R}^1 , $f_n(t) = f(nt)$ for $n=0,\ 1,\ 2,\ \dots$ and $\{f_n\}$ is equicontinuous on $[0,\ 1]$. What conclusions can we draw about f?
- 5. Answer the following:

20

- (a) (i) Let $A \subseteq \mathbb{R}^m$, let $f: A \to \mathbb{R}$, if f is differentiable at \overline{a} , then prove that $\mathrm{D} f(\overline{a}) = [\mathrm{D}_1 f(\overline{a}), \, \mathrm{D}_2 f(\overline{a}), \, ..., \, \mathrm{D}_m f(\overline{a})]$.
 - (ii) Let A be open in \mathbb{R}^m , let $f: A \to \mathbb{R}$, if f is differentiable on A. If A contains the line segment with end points \overline{a} and $\overline{a} + \overline{h}$, then prove that there is a point $\overline{c} = \overline{a} + t_0 \overline{h}$ with $0 < t_0 < 1$, of this line segment such that $f(\overline{a} + \overline{h}) f(\overline{a})$, $= Df(\overline{c}) \cdot (\overline{h})$. P.T.O.

- (b) Given $f: \mathbb{R}^5 \to \mathbb{R}^2$ of class C¹. Let $\overline{a} = (1, 2, -1, +3, 0)$. Suppose that $f(\overline{a}) = \overline{0}$ and $Df(\overline{a}) = \begin{bmatrix} 1 & 3 & 1 & -1 & 2 \\ 0 & 0 & 1 & 2 & -4 \end{bmatrix}$:
 - (I) Show there is a function $f: B \to \mathbb{R}^2$ of class C^1 defined on an open set B of \mathbb{R}^3 such that $: f(x_1, g_1(x), g_2(x), x_2x_3) = \overline{0}$ for $\overline{x} = (x_1, x_2, x_3) \in \mathbb{B}$ and g(1, 3, 0) = (2, -1).
 - (II) Find Dg (1, 3, 0).
- 6. Answer the following:
 - (a) If P* is a refinement of P, then prove that:

$$L(P, f, \alpha) \leq L(P^*, f, \alpha)$$

and $U(P^*, f, \alpha) \leq U(P, f, \alpha)$.

Also, let $f_n(x) = n^2 x (1 - x^2)^n$, $0 \le x \le 1$ and $n = 1, 2, 3, \ldots$, show that :

$$\lim_{n\to\infty} \left[\int_0^1 f_n(x) dx \right] \neq \int_0^1 \left[\lim_{x\to\infty} f_n(x) \right] dx$$

(b) State the Stone-Weierstrass theorem.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by setting f(0) = 0 and

$$f(x, y) = \frac{xy}{x^2 + y^2},$$

If $f(x, y) \neq 0$.

- (i) For which vectors $u \neq 0$ does f(0, u) exist? Evaluate it when it exists.
- (ii) Do $D_1 f$ and $D_2 f$ exist at 0 ?
- (iii) Is f differentiate at 0?
- (iv) Is f continuous at 0 ?

NEPNY-32-2023

4