This question paper contains 3 printed pages]

NEPNY-83-2023

FACULTY OF SCIENCE

M.Sc. (NEP) (First Year) (First Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

MATHEMATICS

Paper-SMATE-401 (C)

(Dynamics and Continuum Mechanics-I)

(Thursday, 28-12-2023)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- $\pmb{N.B}$. :— (i) All questions carry equal marks.
 - (ii) Q. No. 1 is compulsory.
 - (iii) Answer any three from Q. No. 2 to Q. No. 6.
 - (iv) Figures to the right indicate full marks.
- 1. Attempt the following (5 marks each):

20

- (a) If r = [x, y, z], prove that (i) div r = 3, (ii) curl r = 0.
- (b) Prove that, gravitational force is conservative.
- (c) Define (i) Newton's laws of Motion, (ii) Force.
- (d) Find an equimomental system of particles for a uniform rod AB of mass M, where O be the centroid of the rod, 2a its length.

P.T.O.

- 2. Attempt the following (10 marks each):
 - (a) Define vector couple and show that a centroid of the system is unique.

20

- (b) Show that : $\nabla (\phi_1.\phi_2) = \phi_1 \nabla \phi_2 + \phi_2 \nabla \phi_1$
- 3. Attempt the following (10 marks each):
 - (a) State and prove the principle of conservation of energy.
 - (b) A smooth wire bent in the form of parabola is fixed with its axis vertical and vertex downwards. A particle of mass m oscillate on the wire coming to rest at extremities of the latus rectum. Show that the reaction of the wire on the particle when passing through the vertex is 2 mg.
- 4. Attempt the following (10 marks each):
 - (a) Prove the parallel axis for moment of inertia and product of inertia.
 - Two particle of masses m_1 and m_2 at A and B connected by a rigid massless rod AB, their velocities are $\overline{v_1}$ and $\overline{v_2}$ are suddenly changed by the application of externally impulses $\overline{J_1}$ and $\overline{J_2}$. Prove that the magnitude f of impulsive reaction of the rod on m_1 is $\frac{m_1 \cdot m_2}{m_1 + m_2} \hat{e} \left[\overline{J_1} \overline{J_2} \right].$

- 5. Attempt the following (10 marks each):
 - (a) Prove that kinetic energy of rigid body in a general motion is:

20

$$\mathbf{T} \ = \ \frac{1}{2} \mathbf{M} \overset{=}{v^2} + \frac{1}{2} \left[\mathbf{A}^* \omega_1^2 + \mathbf{B}^* \omega_2^2 + \mathbf{C}^* \omega_3^2 \right]$$

- (b) With the usual notations, prove that $\tan 2 \alpha = \left(\frac{2F}{B-A}\right)$
- 6. Attempt the following (10 marks each):
 - (a) Show that there is no loss of energy for a perfectly elastic impact.
 - (b) Determine the moment of inertia of the distribution about the axis through O having direction cosines $[\lambda, \mu, v]$ in terms of these direction cosines and A, B, C, D, E, F.

NEPNY-83-2023