This question paper contains 3 printed pages]

NEPNY—50—2023

FACULTY OF SCIENCE AND TECHNOLOGY

M.A./M.Sc. (NEP) (First Year) (First Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

MATHEMATICS

Paper-SMAT-C403

(COMPLEX ANALYSIS)

(Tuesday, 26-12-2023)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

N.B. := (i) All questions carry equal marks.

- (ii) Q. No. 1 is compulsory.
- (iii) Answer any three from Q. No. 2 to Q. No. 6.
- (iv) Figures to the right indicate full marks.
- 1. Answer the following:

20

- (a) Find all the values of z such that $e^z = 5 + 5i$.
- (b) Find the length of the curve C : $z(t) = 3e^{2it} + 2 (-\pi \le t \le \pi)$.
- (c) $\int_C \frac{e^{z^2}}{(z-2)} dz$ where, C : |z| = 3.
- (d) Find the principal part of the Laurent's expansion for the function $f(z) = \frac{z}{z^2 + 4}$ valid in the neighborhood of z = 2i.

P.T.O.

2. Answer the following:

20

(a) Prove that, for given three distinct points z_1 , z_2 and z_3 in extended z-plane and three distinct points w_1 , w_2 and w_3 in extended w-plane there exist a unique bilinear transformation w = T(z) such that $T(z_k) = w_k$ for

$$k = 1, 2, 3.$$

- (b) Show that the exponential function $f(z) = e^z$ is periodic function with purely imaginary period $2\pi i$. Also show the following:
 - (i) $\sin 2z = 2 \sin z$. $\cos z$ (ii) $\sin \left(\frac{\pi}{2} + z\right) = \cos z$.
- 3. Answer the following:

20

- (a) Define Contour. State and prove Cauchy's main theorem.
- (b) Find the values of a, b and c such that the following functions,

(i)
$$f(z) = a(x^2 + y^2) + ibxy + c$$
 (ii) $f(z) = x + ay - i(bx + cy)$ are entire.

4. Answer the following:

20

- (a) State and prove Cauchy's Integral Formula.
- (b) Evaluate

(i)
$$\int_C \frac{3z^4 + 2z - 6}{(z - 2)^3} dz \text{ where, } C : |z| = 3.$$

(ii)
$$\int_C \frac{z-3\cos z}{\left(z-\frac{\pi}{2}\right)^2} dz \text{ where, } C: |z| = 2.$$

WT	£	(3))86	

NEPNY-50-2023

5. Answer the following:

20

- (a) State and prove Casorati-Weierstrass' Theorem.
- (b) (i) Find [Res: f(z); z=1] for the function $f(z)=\frac{z^4-z^3+17z+12}{(z-1)^3}$ Also evaluate $\int_C f(z) \ dz$.
 - (ii) Evaluate $\int_C \frac{1}{z(z-3)} dz$ along any simple closed contour C.
- 6. Answer the following:

20

- (a) Define length of the curve. State and prove M-L inequality theorem.
- (b) Find all the singularities of the function $f(z) = \cot \pi z$. Also find the principal part of Laurent's expansion in the deleted neighborhood of the each singularity.

NEPNY-50-2023