This question paper contains 3 printed pages]

NEPNY-14-2023

FACULTY OF SCIENCE AND TECHNOLOGY

M.A./M.Sc. (NEP) (First Year) (First Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

MATHEMATICS

Paper-SMATC-401

(Algebra)

(Wednesday, 20-12-2023)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—80

- N.B. := (i) All questions carry equal marks.
 - (ii) Question No. 1 is compulsory.
 - (iii) Answer any three from Q. No. 2 to Q. No. 6.
 - (iv) Figures to the right indicate full marks.
- 1. Answer the following:

20

- (a) Prove that every finite group has a composition series.
- (b) Prove that there is no simple group of order 63.
- (c) Prove that intersection of ideals is a ring R is again ideal.

P.T.O.

	(d)	Prove that a group homomorphism $\phi: G \to H$ is injective if and	lonly
		if ker $(\phi) = \{e\}$.	
2.	Ansv	wer the following:	20
	(a)	State and prove first isomorphism theorem.	Ò,
	(<i>b</i>)	Prove that every infinite cyclic group is isomorphic to Z .	
3.	Ansv	wer the following:	20
	(a)	Write down all the composition series for the $\mathrm{Q}_8.$	
	(<i>b</i>)	If G be a nilpotent group, then every subgroup of G and	every
		homomorphic image of G are nilpotent.	
4.	Ansv	wer the following:	20
	(a)	Find the non-isomorphic abelian group of order 16.	
153	(b)	State and prove first sylow theorem.	
5.	Ansv	wer the following:	20
	(a)	Prove that every Euclidian domain is a UFD.	
	(<i>b</i>)	Prove that an ideal M in the ring of integer Z is maximal ideal i	f and
		only if $M = \langle P \rangle$, P is prime number.	

WT

J		-20	NEPNY—14—2023
	J	J)	3

6. Answer the following:

20

- (a) Prove that a sylow P-subgroup of a finite group G is unique if and only if it is normal.
- (b) If H and K are normal subgroup of G and $K \subset H$, then prove that $(G \ / \ K) / H \ / \ K \quad G / H .$

NEPNY—14—2023