This question paper contains 4 printed pages]

NY-386-2023

FACULTY OF SCIENCE

M.Sc. (First Year) (Second Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(New/CBCS Pattern)

MATHEMATICS

Paper-XI (B)

(Dynamics and Continuum Mechanics-II)

(Friday, 15-12-2023)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—75

- Note:— (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Attempt the following:
 - (a) Define a tensor and find its components.

8

(b) A rigid body is rotated clockwise through 90° about \hat{e}_3 axis then prove that this tensor \bar{R} is orthogonal. Verify that $[\bar{R}][\bar{R}]^T = [\bar{I}]$, also find det $[\bar{R}]$.

P.T.O.

(c) Prove that matrix of tensor with respect to principal direction is diagonal and also prove that the principal value of tensor \bar{T} include the maximum value that the diagonal elements of any matrix of \bar{T} we have,

$$\frac{\Delta(d\overline{v})}{d\overline{v}} = \overline{E}_1 + \overline{E}_2 + \overline{E}_3$$

- (d) Define dyadic product of two vectors \overline{a} and \overline{b} and prove that dyadic product of \overline{a} and \overline{b} is a tensor and obtain its components. 7
- 2. Attempt the following:
 - (a) Obtain six equations of compatibility for infinitesimal strain components.
 - (b) For a plane stress find the principal values and corresponding principal directions.

Or

(c) Define transpose of a tensor and with usual notations show that:

$$[\overline{\mathbf{Q}}][\overline{\mathbf{Q}}^{\mathrm{T}}] = [\overline{\mathbf{Q}}^{\mathrm{T}}][\overline{\mathbf{Q}}] = [\overline{\mathbf{I}}]$$

8

- (d) Define eigen values and eigen vector of tensor and explain how are these determined.
- 3. Attempt the following:
 - (a) Derive Cauchy's equation of motion.

WT		(3) NY—386—20	ე23
	(<i>b</i>)	Show that there is \mathbf{S}_{ij} are Cartesian components of a tensor $\overline{\mathbf{S}}$, th	ner
		$S_{ii} = S_{11} + S_{22} + S_{33}$ is a scalar invarient with respect to	al
		orthogonal.	7
		Or Sall Light Or Sall Light Children Light Children	
	(c)	Derive an expression for Cartesian co-ordinates of rate of deformat	ior
		and spin tensor.	8
	(d)	Prove that $\frac{\partial \Gamma_{ij}}{\partial_{xj}} + P_{Bj} = P_{ai}$.	7
4.	Atten	mpt the following:	
	(a)	The motion of a body is:	
	NE STORY	$x_1 = x_1 + kt \ x_2, \ x_2 = x_2, \ x_3 = x_3$	
		if the temperature field is given by the spatial description θ =	<i>x</i> -
		+ x_2 obtain velocity and rate of change of temperature for particular	ılaı
		material particles.	8
	(b)	Define and explain Dilation.	7
		Or	

Define strain tensor. Write its components. P.T.O.

curls of a vector field.

Discuss divergence of a vector field, divergence of a tensor field and

8

7

WT (4) NY—386—2023

- 5. Attempt any three of the following:
 - (a) Find velocity field associated with motion of rigid body relation with angular velocity:
 - (i) $\bar{w} = w\hat{e}_3$
 - (ii) Using the velocity field of part (i) evaluate acceleration field
 - (b) State and prove equations of hydrostatics.
 - (c) Explain gradient of vector field.
 - (d) Obtain equation of conservation of mass.