This question paper contains 2 printed pages] ## NY-15-2023 ## FACULTY OF ARTS AND SCIENCE ## M.A./M.Sc. (First Year) (First Semester) EXAMINATION NOVEMBER/DECEMBER, 2023 (New/CBCS) ## **MATHEMATICS** Paper-I [Abstract Algebra-I (Group & Ring Theory)] (Tuesday, 05-12-2023) Time: 10.00 a.m. to 1.00 p.m. Time—3 Hours Maximum Marks—75 - N.B. := (i) All questions are compulsory. - (ii) Figures to the right indicate full marks. - 1. (a) Prove that, every cyclic group of order n is isomorphic to \mathbf{Z}_n . Also prove that, every subgroup of cyclic group is cyclic. Or (b) State and prove second isomorphism theorem. - 15 - 2. (a) Prove that, subgroup of solvable group is solvable. Also, prove that homomorphic image of solvable group is solvable. Or (b) The set Aut (G) of all automorphism of a group G is a group under composition of mappings, and In (G), Δ Aut (G). Moreover P.T.O. | | (2) NY—15—2 | 023 | |--------------|--|---| | | $G/Z(G) \approx In (G).$ | 15 | | (a) | Prove that, a sylow <i>p</i> -subgroup of a finite group G is unique iff i | t is | | | normal. Also, prove that there are no simple group of order 56. | 15 | | | | | | (<i>b</i>) | State and prove third Sylow theorem. Also, find the non-isomorp | ohic | | | abeian groups of order $360 = 2^3.3^2.5^1$. | 15 | | (a) | State and prove fundamental theorem of homomorphisms. | 15 | | | LABERTAL STABLES STABLES OF SELECT STABLES STA | | | (<i>b</i>) | In a nonzero commutative ring with unity, an ideal M is maximal | l iff | | | R/M is a field. | 15 | | Atter | mpt any three of the following: | 15 | | (a) | If H and K are cyclic group of order m & n respectively su | uch | | .030 | that $(m, n) = 1$. Then $H \times K$ is a cyclic group order m . | n. | | (<i>b</i>) | An abelian group G has a composition series iff G is finite. | | | (c) | Let $f: \mathbb{R} \to \mathbb{S}$ be a Homomorphism of a ring \mathbb{R} into a ring \mathbb{S} . The second secon | hen | | | $\operatorname{Ker} f = (0) \text{ iff } f \text{ is } 1-1.$ | | | (d) | If G is a group of order pq , where p and q are distinct primes | and | | -152 | if a has a normal subgroup H of order p and a normal subgroup 2023 | ρК | | | (b) (a) (b) (ta) (b) (c) (d) | G/Z(G) ≈ In (G). (a) Prove that, a sylow p-subgroup of a finite group G is unique iff in normal. Also, prove that there are no simple group of order 56. Or (b) State and prove third Sylow theorem. Also, find the non-isomorphism groups of order 360 = 2³.3².5¹. (a) State and prove fundamental theorem of homomorphisms. Or (b) In a nonzero commutative ring with unity, an ideal M is maximal R/M is a field. Attempt any three of the following: (a) If H and K are cyclic group of order m & n respectively state (m, n) = 1. Then H × K is a cyclic group order m. (b) An abelian group G has a composition series iff G is finite. (c) Let f: R → S be a Homomorphism of a ring R into a ring S. Taker f = (0) iff f is 1-1. (d) If G is a group of order pq, where p and q are distinct primes if a has a normal subgroup H of order p and a normal subgroup |