This question paper contains 3 printed pages]

NY-190-2023

FACULTY OF SCIENCE AND TECHNOLOGY

M.Sc. (First Year) (First Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(CBCS/New Pattern)

COMPUTER SCIENCE

Paper CS-103

(Mathematical Foundation for Computer Science)

(Saturday, 9-12-2023)

Time: 10.00 a.m. to 1.00 p.m.

Time—Three Hours

Maximum Marks—75

- N.B. := (i) All questions are compulsory.
 - (ii) Draw well labelled diagram wherever necessary to illustrate your answers.
 - (iii) Assume suitable data, if required.
- 1. Attempt the following questions:
 - (A) State and verify all laws of set union and intersection with suitable example.

Or

- (B) (a) If $A = \{a, b, c, d\}$, $B = \{x, y, z\}$ and $C = \{1, 2, 3\}$, then find:
 - (i) $(A \cup C) \times B$

8

- (ii) $(A \cup B) \times C$.
- (b) Explain partition of the sets.

7

P.T.O.

WT	(2)		NY-190-2023
---------------------	-----	--	-------------

- 2. Attempt the following questions:
 - (A) Construct the truth table for the following statement pattern: 15
 - (i) $(p \wedge q) \rightarrow r$
 - (ii) $(q \lor r) \land p$
 - $(iii) \quad (p \vee q) \leftrightarrow (r \wedge p).$

Or

(B) (a) Using truth table show that the following two statement patterns are equivalent.

$$p \wedge (q \vee r); (p \wedge q) \vee (p \wedge r)$$

(b) Describe normal forms.

7

- 3. Attempt the following questions:
 - (A) Explain the following terms:

15

- (i) Poset
- (ii) Lattice
- (iii) Pigeon-hole principle.

Or

- (B) (a) From a group of 7 men and 6 women, five persons are to be selected to form a committee so that at leats 3 men are there on the committee. In how many ways can it be done?
 - (b) In how many different ways can the letters of the word 'LEADING' be arranged in such a way that the vowels always come together?

4 .	Attem	npt the following questions:				
	(A)	in the following terms:	15			
		<i>(i)</i>	Graph			
		(ii)	Path			
		(iii)	Circuit.			
			Or			
	(B)	(a)	If $f(x) = x^3$, $g(x) = 2x$ and $h(x) = x + 3$, then prove the	ıat		
			$(f \circ g) \circ h = f \circ (g \circ h).$	8		
		(<i>b</i>)	Define a relation R from A to A = $\{1, 2, 3, 4, 5, 6\}$	as		
			$R = \{(x, y) : y = x + 1\}$. Determine the domain, codomain a	ınd		
			range of R.	7		
5.	Write	short	notes on any three of the following:	15		
	(a)	Semigroup				
(b)(c)(d)		Hamiltonian graph				
		Group codes				
		Isomorphism of graphs				
	(e)	Cyclic	e groups.			

NY—190—2023

WT