This question paper contains 2 printed pages]

NA-58-2023

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. (Third Year) (Sixth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(CBCS/New Pattern)

MATHEMATICS

Paper-XVII

(Elementary Number Theory)

(Wednesday, 13-12-2023)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. : (i) Figures to the right indicate full marks.

- (ii) Attempt all questions.
- 1. Let a and b be integers, not both zero, then prove that a and b are relatively primes if and only if there exists integers x and y such that 1 = ax + by.

Also show that if
$$gcd(a, b) = d$$
, then $gcd(\frac{a}{d}, \frac{b}{d}) = 1$.

Or

- (a) If p is a prime and $p \mid ab$, then prove that $p \mid a$ or $p \mid b$. Also show that the number $\sqrt{2}$ is irrational.
- (b) Use the sieve of eratosthens to find all the primes not exceeding 100. 7
- 2. Prove that for arbitrary integers a and b, a ≡ b (mod n) if and only if a and b leave the same non-negative remainder when divided by n. Show that 41 divides 2²⁰ 1.

P.T.O.

WT (2) NA—58—2023

(a) Let n_1, n_2, \ldots, n_r be positive integers such that $\gcd(n_i, n_j) = 1$, for $i \neq j$.

Prove that the system of linear congruences

$$x \equiv a_1 (\text{mod } n_1)$$

$$x \equiv a_2 (\text{mod } n_2)$$

$$\vdots$$

$$x \equiv a_r (\text{mod } n_r)$$

has a simultaneous solution, which is unique modulo the integer $n_1 \cdot n_2 \cdot \dots \cdot n_r$.

(b) Let p be a prime and suppose that p X a, then prove that $a^{p-1} \equiv 1 \pmod{p}$.

7

10

3. Attempt any two of the following:

one.

- If n is an odd pseudoprime, then prove that $M_n = 2^n 1$ is a larger
- (b) Show that the integers 1,571,724 is divisible by 9 and 11.
- (c) Find the canonical form of the integers 4725 and 17460.
- (d) By using Euclidean algorithm find gcd (12378, 3054).