This question paper contains 3 printed pages]

NA-63-2023

FACULTY OF ARTS AND SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(CBCS/New Pattern)

MATHEMATICS

Paper-XIII

(Linear Algebra)

(Thursday, 14-12-2023)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. If U and W are two subspaces of a vector space V, then prove that U + W is a subspace of V and if z = U + W, then prove that $Z = U \oplus W$ if and only if any vector $z \in Z$, can be expressed uniquely as the sum z = u + w, $u \in U$, $w \in W$.

Or

(a) In a vector space V if $\{v_1, v_2, \ldots, v_n\}$ generates V and if $\{w_1, w_2, \ldots, w_m\}$ is L.I., then show that $m \le n$.

P.T.O.

WT (2) NA-63-2023

- (b) Let $T: U \to V$ be a linear map, then prove that :
 - (i) T is one-one iff N(T) is the zero subspace.
 - (ii) If $[u_1, u_2, ..., u_n] = U$, then :

$$\mathbf{R} \ (\mathbf{T}) = [\mathbf{T}(u_1), \ \mathbf{T}(u_2), \, \ \mathbf{T}(u_n)].$$

2. Show that every real vector space of dimension p is isomorphic to V_p . Also, show that $T: P_2 \to V_3$ defined by $T(\alpha_0 + \alpha_1 x + \alpha_2 x^2) = (\alpha_0, \alpha_1, \alpha_2)$ is an isomorphism.

Or

(a) Determine the matrix $(T:B_1,B_2)$ for the linear map $T:V_3\to V_3$ defined by :

$$\mathbf{T}\left(x_{1}, x_{2}, x_{3}\right) = \left(x_{1} - x_{2} + x_{3}, 2x_{1} + 3x_{2} - \frac{1}{2}x_{3}, x_{1} + x_{2} - 2x_{3}\right)$$

$$B_1 = \{e_1, e_2, e_3\}$$

$$B_2 = \{(1,\ 1,\ 0),\ (1,\ 2,\ 3),\ (-1,\ 0,\ 1)\}.$$

- Let A be a square matrix of order n having k distinct eigen-values $\lambda_1, \lambda_2, \ldots, \lambda_k$. Let V_i be an eigenvectors corresponding to the eigenvalues $\lambda_i, i = 1, 2, \ldots, k$, then show that the set $\{V_1, V_2, \ldots, V_k\}$ is L.I.
- 3. Attempt any two of the following: 5 each
 - (a) Let S be a non-empty subset of a vector space V. Then prove that [S] the span of S, is a subspace of V.

WT (3) NA-63-2023

- (b) Let U be a subspace of a finite-dimensional vector space V, then prove that $\dim U \le \dim V$ and equality holds only when U = V.
- (c) Let $T:U\to V$ and $S:V\to W$ be two linear maps. Then prove that if S and T are non-singular, then ST is also non-singular and $(ST)^{-1}=T^{-1}S^{-1}$.
- (d) Prove that any orthogonal set of non-zero vectors in an inner product space is L.I.