This question paper contains 3 printed pages]

NA-238-2023

FACULTY OF SCIENCE

B.Sc. (Third Year) (Fifth Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

(CBCS/New Pattern)

INDUSTRIAL CHEMISTRY

Paper-XIII

(Chemical Engineering Thermodynamics)

(Wednesday, 27-12-2023)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (i) Attempt all questions.

- (ii) Scientific calculator and log tables are allowed.
- (iii) Figures to the right indicate full marks.
- Explain thermodynamics term and variable and extensive and intensive properties of thermodynamic process.

Or

(a) Solve the problem:

8

One mole of the van der Waals gas at 300 K and 10 atm pressure isothermally compressed to 510 atm. What would be the enthalpy change for the process ?

The Joule-Thomson coefficient is given.

P.T.O.

WT	(2)	NA—238—20)23
---------------------	-----	-----------	-----

(b) Solve the problem:

An ideal gas (Cp.m = $29.1 \text{ Jk}^{-1} \text{ mol}^{-1}$) is expanded reversibly and adiabatically from a volume of 1.43 dm^3 at a pressure of 303975 P and temperature 298 K until the volume is 2.86 dm^3 .

Calculate:

- (i) The final temperature and pressure of a gas.
- (ii) q, W, ΔE and ΔH for the process.
- 2. Explain first law applied to cyclic process in detail and calculate a steam engine operates between 400 and 300 K under high pressure. What is the minimum amount of heat that must be withdrawn from the hot reservoir to obtain 1000 joules of work?

Or

- (a) Explain thermodynamic relation based on second law. 8
- (b) Solve the problems:
 - 0.1 kg nitrogen gas at 298 K held by piston undergoes 30 atm pressure. The pressure is suddenly released to 10 atm and the gas expands adiabatically. If $C_{vm} = 20.8~JK^{-1}~mol^{-1}$, what is the final temperature and volume? Calculate ΔS of system for this expansion. What would be the value of ΔS (surrounding) and explain entropy.

WT		NA-238-2023
VV I		NA-450-2025
** =		1,11 _00 _00

3. Write short notes on any two:

- (a) Clausius Clapeyron equation
- (b) Gibbs free energy
- (c) Carnot cycle
- (d) Joule-Thomson porous plug experiment.