This question paper contains 2 printed pages]

NA-29-2023

FACULTY OF SCIENCE

B.Sc. (Third Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(New Pattern)

PHYSICS

Paper VI

(Waves and Oscillations)

(Friday, 8-12-2023)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

N.B. := All questions are compulsory.

 Explain in detail analytical treatment of stationary waves for closed end organ pipe.

Or

- (a) Explain differential equation of wave motion.
 - A simple harmonic wave of amplitude 8 units traverses a line of particles in the direction of the positive X-axis. At any given instant of time,

for a particle at a distance of 10 cm from the origin, the displacement is +6 units, and for a particle at a distance of 25 cm from the origin,

the displacement is +4 units. Calculate the wavelength. 7

P.T.O.

8

WT	(2) NA—29	9—2023
2.	Derive Sabine's reverberation formula.	15
	Or Service Constitution	801 JUS.
	(a) Derive an expression for forced vibration.	8
	(b) Explain in detail undamped vibrations.	7
3.	Write short notes on (any two):	10
	(a) Wave velocity and particle velocity	
	(b) Energy is not transferred in a stationary waves	
	(c) Damped vibrations	
	(d) Magnetostriction oscillator.	