This question paper contains 2 printed pages]

NA-74-2023

FACULTY OF ARTS/SCIENCE

B.A./B.Sc. (Second Year) (Third Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

(New Pattern)

MATHEMATICS

Paper-VII

(Group Theory)

(Friday, 15-12-2023)

Time: 2.00 p.m. to 4.00 p.m.

Time—2 Hours

Maximum Marks—40

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
- 1. Let A be a non-empty set and let R be an equivalence relation in A. Let a and b be arbitrary elements in A. Then prove that:
 - (i) $a \in [a]$
 - (ii) If $b \in [a]$, then [b] = [a]
 - (iii) [a] = [b] if and only if $(a, b) \in \mathbb{R}$ i.e. if and only if $a \mathbb{R} b$.

Or

- (a) Prove that a non-empty subset H of a group G is a subgroup of G if and only if:
 - (i) $a \in \mathbf{H}, b \in \mathbf{H} \Rightarrow ab \in \mathbf{H}$
 - (ii) $a \in H \Rightarrow a^{-1} \in H$ where a^{-1} is the inverse of a in G.

P.T.O.

WT	2	2)	NA—74—2023

- Show that the four fourth roots of unity namely 1, -1, i, -i form a group with respect to multiplication.
- 2. Prove that the relation of congruency in a group G defined by $a \equiv b \pmod{H}$ iff $ab^{-1} \in H$ is an equivalence relation.

Or

- (a) A subgroup H of a group G is a normal subgroup of G if and only if the product of two right cosets of H in G is again a right coset of H in G.
- (b) Show that $a \to a^{-1}$ is an automorphism of a group G if and only if G is abelian.
- 3. Attempt any two of the following: 5 marks each
 - (a) Show that the set I of all integers, -4, -3, -2, -1, 0, 1, 2, 3, 4, is a group with respect to the operation of addition of integers.
 - (b) Show that if a, b are any two elements of a group G, then $(ab)^2 = a^2b^2$ if and only if G is abelian.
 - (c) Prove that every proper sub-group of an infinite cyclic group is infinite.
 - (d) Show that every subgroup of an abelian group is normal.