This question paper contains 2 printed pages]

NA-218-2023

FACULTY OF SCIENCE

B.Sc. (Second Semester) EXAMINATION NOVEMBER/DECEMBER, 2023

(New Pattern)

INDUSTRIAL CHEMISTRY

Paper-IV

(Energy Balance and Process Calculation)

(Wednesday, 27-12-2023)

Time: 10.00 a.m. to 12.00 noon

Time—2 Hours

Maximum Marks—40

N.B. := (1) Solve all questions.

- (2) Scientific calculator is allowed.
- 1. Explain heat capacity. Derive the equation $C_p C_v = R$.

15

Or

Methane gas is heated from 303 K (30°C) to 523 K (250°C) at atmospheric pressure. Calculate the heat added per kmol methane using \mathbf{C}_p ° data given below :

Data $C_p^{\circ} = a + bT + cT^2 + dT^3$ kJ/C kmol–K :

Gas	a a	$b \times 10^3$	$c \times 10^6$	$d \times 10^9$
Methane	19.2494	52.1135	11.973	-11.3173

2. A dryer is used to dry 100 kg/h wet solids from 20% to 1% moisture by weight by hot air. The fresh air containing 0.02 kg water vapour per kg dry air is P.T.O.

WT	0	2) Par		NA-	-218-	-2023
----	---	---	-------	--	-----	-------	-------

available at 303 K (30°C) and 101.325 kPa. Air leaving the dryer is found to contain 0.1 kg water vapour per kg dry air. If the recycle ratio is maintained at 3 kg dry air in a recycle air per kg dry air in a fresh air, calculate the volumetric flow rate of fresh air assuming the molecular weight of fresh air to be 28.8.

Or

- (a) Explain in detail ultimate analysis coal.
- (b) Write a note on chemical oxygen demand.
- 3. Write short notes on (any two):
 - (a) Acidity and Alkalinity
 - (b) Purging ratio
 - (c) Heat and work
 - (d) Recycle ratio.