This question paper contains 4 printed pages]

ND-22-2023

FACULTY OF SCIENCE AND TECHNOLOGY

B.Sc. CS (First Year) (First Semester) EXAMINATION

NOVEMBER/DECEMBER, 2023

(CBCS/Revised Pattern)

COMPUTER SCIENCE

Paper BCS-104 B

(Fundamentals of Digital Electronics)

(Wednesday, 6-12-2023)

Time: 10.00 a.m. to 1.00 p.m.

Time—3 Hours

Maximum Marks—75

- N.B. := (i) All questions are compulsory.
 - (ii) Figures to the right indicate full marks.
 - (iii) Assume suitable data, if required.
 - (iv) Use of any electronic media such as mobile phone, digital diary and electronic calculator is not permitted.
- 1. Attempt any five of the following (3 marks each):

15

- (a) Gray Code
- (b) Half Adder

P.T.O.

WT (2) ND—22—2023

- (c) One's Complement of Binary
- (d) Hexadecimal number system.
- (e) Encoder
- (f) Ex-OR Gate
- (g) T flip-flop.
- 2. Attempt any three of the following (5 marks each):
 - (a) Perform the following conversions:

$$(i)$$
 $(37)_{10} = (?)_2$

$$(ii)$$
 $(10101.01)_2 = (?)_{10}$

$$(iii)$$
 $(253)_8 = (?)_{16}$

$$(iv)$$
 $(D0E)_{16} = (?)_2$

$$(v) \qquad (1632)_{10} = (?)_{16}$$

(b) Perform the following Operations:

$$(i) \qquad (1011)_2 + (11011)_2$$

$$(ii)$$
 $(11000)_2 - (1011)_2$

$$(iii) \quad \left(111\right)_2 \, \times \, \left(101\right)_2$$

$$(iv)$$
 $(1010)_2 \div (10)_2$

$$(v)$$
 $(10110)_2 = (?)_{2's \text{ Complement}}$

WT	(0)	ND-22-2023
\A/1 '		NII 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
VVI		

- (c) What is Logic Gate? Explain AND, OR and NOT Gates in detail.
- (d) What is Number System? Explain Binary and Octal number systems in detail.
- (e) What is Parity Checking? Explain Hamming code in detail.
- 3. Attempt any three of the following (5 marks each):
 - (a) Explain NAND and NOR Gates in detail.
 - (b) State and prove DeMorgan's first and second theorem.
 - (c) Minimize the following using K-map:

$$f(A,B,C,D) = \Sigma m(0, 1, 2, 4, 5, 7, 8, 9, 10, 11, 14, 15)$$

(d) Minimize the following using K-map:

$$f(A,B,C,D) = \pi M (1, 2, 3, 5, 6, 8, 9, 12, 13, 14)$$

(e) Draw the logic circuit for the following expression

$$Y = A'B'C' + C' + (A.B)' + (B+C)'$$

- 4. Attempt any *three* of the following (**5** marks each):
 - (a) Explain SOP and POS forms of the expression in detail.
 - (b) What is Multiplexer? Explain 8:1 Multiplexer in detail.
 - (c) What is flip-flop? Explain J-K flip-flop in detail.

P.T.O.

15

WT (4) ND—22—2023

- (d) What is Analog to digital converter? Explain any one type of Analog to digital converter in detail.
- (e) What is Shift register? Explain SISO and SIPO shift registers in detail.
- 5. Write short notes on any three of the following (5 marks each): 15
 - (a) BCD code
 - (b) K-map
 - (c) Full adder
 - (d) D flip-flop
 - (e) Asynchronous Counter.